Generate A Key Based On An Encrypted Key

RandomKeygen is a free mobile-friendly tool that offers randomly generated keys and passwords you can use to secure any application, service or device. KEY RandomKeygen - The Secure Password & Keygen Generator. Jun 13, 2019 It is not possible to determine what the private key is from an examination of the public key. The private key can encrypt messages that only the private key can decrypt. When you make a connection request, the remote computer uses its copy of your public key to create an encrypted message. The message contains a session ID and other metadata. Generating multiple keys based on same password. Ask Question Asked 3 years, 4 months ago. Active 3 years, 4 months ago. Viewed 211 times 1 $begingroup$ I want to generate an encryption key for the user to encrypt their data locally before sending to the server. The server should not have any knowledge, nor be able to compute, this encryption key. Key generation is the process of generating keys in cryptography.A key is used to encrypt and decrypt whatever data is being encrypted/decrypted. A device or program used to generate keys is called a key generator or keygen. Sep 26, 2017  Today we announced Geo Key Manager, a feature that gives customers unprecedented control over where their private keys are stored when uploaded to Cloudflare.This feature builds on a previous Cloudflare innovation called Keyless SSL and a novel cryptographic access control mechanism based on both identity-based encryption and broadcast encryption. Jul 29, 2019 By following the instructions in this tutorial, you have setup SSH-key-based authentication on an Ubuntu 18.04 server. The connection is now highly secure as it uses a set of unique, encrypted SSH keys.

Introduction

Secure Shell (SSH) is an encrypted protocol used by Linux users to connect to their remote servers.

Generally, there are two ways for clients to access their servers – using password based authentication or public key based authentication.

Using SSH keys for authentication is highly recommended, as a safer alternative to passwords.

This tutorial will guide you through the steps on how to generate and set up SSH keys on CentOS 7. We also cover connecting to a remote server using the keys and disabling password authentication.

1. Check for Existing Keys

Prior to any installation, it is wise to check whether there are any existing keys on the client machines.

Open the terminal and list all public keys stored with the following command:

The output informs you about any generated keys currently on the system. If there aren’t any, the message tells you it cannot access /.ssh/id_*.pub , as there is no such file or directory.

2. Verify SSH is Installed

To check if thw package is installed, run the command:

If you already have SSH, the output tells you which version it is running. Currently, the latest version is OpenSSH 8.0/8.0p1.

Note: Refer to our guide If you need to install and enable SSH on your CentOS system.

Steps to Creating SSH keys on CentOS

Step 1: Create SSH Key Pair

1. Start by logging into the source machine (local server) and creating a 2048-bit RSA key pair using the command:

If you want to tighten up security measures, you can create a 4096-bit key by adding the -b 4096 flag:

2. After entering the command, you should see the following prompt:

3. To save the file in the suggested directory, press Enter. Alternatively, you can specify another location.

Note: If you already have a key pair in the proposed location, it is advisable to pick another directory. Otherwise it will overwrite existing SSH keys.

4. Next, the prompt will continue with:

Although creating a passphrase isn’t mandatory, it is highly advisable.

5. Finally, the output will end by specifying the following information:

Primary key generator in hibernate. Now you need to add the public key to the remote CentOS server.

You can copy the public SSH key on the remote server using several different methods:

  1. using the ssh-copy-id script
  2. using Secure Copy (scp)
  3. manually copying the key

The fastest and easiest method is by utilizing ssh-copy-id. If the option is available, we recommend using it. Otherwise, try any of the other two noted.

1. Start by typing the following command, specifying the SSH user account, and the IP address of the remote host:

If it is the first time your local computer is accessing this specific remote server you will receive the following output:

2. Confirm the connection – type yes and hit Enter.

3. Once it locates the id_rsa.pub key created on the local machine, it will ask you to provide the password for the remote account. Type in the password and hit Enter.

4. Once the connection has been established, it adds the public key on the remote server. This is done by copying the ~/.ssh/id_rsa.pub file to the remote server’s ~/.ssh directory. You can locate it under the name authorized_keys.

5. Lastly, the output tells you the number of keys added, along with clear instructions on what to do next:

1. First, set up an SSH connection with the remote user:

2. Next, create the ~/.ssh directory as well as the authorized_keys file:

3. Use the chmod command to change the file permission:

chmod 700 makes the file executable, while chmod 600 allows the user to read and write the file.

Generate A Key Based On An Encrypted Key Code

4. Now, open a new terminal session, on the local computer.

5. Copy the content from id_rsa.pub (the SSH public key) to the previously created authorized_keys file on the remote CentOS server by typing the command:

With this, the public key has been safely stored on the remote account.

1. To manually add the public SSH key to the remote machine, you first need to open the content from the ~/.ssh/id_rsa.pub file:

2. As in the image below, the key starts with ssh-rsa and ends with the username of the local computer and hostname of the remote machine:


3. Copy the content of the file, as you will need later.

4. Then, in the terminal window, connect to the remote server on which you wish to copy the public key. Use the following command to establish the connection:

5. Create a ~/.ssh directory and authorized_keys file on the CentOS server with the following command:

6. Change their file permission by typing:

7. Next, open the authorized_keys file with an editor of your preference. For example, to open it with Nano, type:

8. Add the public key, previously copied in step 2 of this section, in a new line in (under the existing content).

9. Save the changes and close the file.

10. Finally, log into the server to verify that everything is set up correctly.

Generate A Key Based On An Encrypted Keyboard

Once you have completed the previous steps (creating an RSA Key Pair and copying the Public Key to the CentOS server), you will be able to connect to the remote host without typing the password for the remote account.

All you need to do is type in the following command:

If you didn’t specify a passphrase while creating the SSH key pair, you will automatically log in the remote server.

Otherwise, type in the passphrase you supplied in the initial steps and press Enter.

Once the shell confirms the key match, it will open a new session for direct communication with the server.

Although you managed to access the CentOS server without having to provide a password, it still has a password-based authentication system running on the machine. This makes it a potential target for brute force attacks.

You should disable password authentication entirely by following the outlined steps.

Note: Consider performing the following steps through a non-root account with sudo privileges, as an additional safety layer.

1. Using the SSH keys, log into the remote CentOS server which has administrative privileges:

2. Next, open the SSH daemon configuration file using a text editor of your choice:

Generate A Key Based On An Encrypted Key Code

3. Look for the following line in the file:

4. Edit the configuration by changing the yes value to no. Thus, the directive should be as following:

5. Save the file and exit the text editor.
6. To enable the changes, restart the sshdservice using the command:

7. Verify the SSH connection to the server is still functioning correctly. Open a new terminal window and type in the command:

In this article, you learned how to generate SSH key pairs and set up an SSH key-based authentication. We also covered copying keys to your remote CentOS server, and disabling SSH password authentication.

Next, You Should Read:

-->

Creating and managing keys is an important part of the cryptographic process. Symmetric algorithms require the creation of a key and an initialization vector (IV). The key must be kept secret from anyone who should not decrypt your data. The IV does not have to be secret, but should be changed for each session. Asymmetric algorithms require the creation of a public key and a private key. The public key can be made public to anyone, while the private key must known only by the party who will decrypt the data encrypted with the public key. This section describes how to generate and manage keys for both symmetric and asymmetric algorithms.

Symmetric Keys

The symmetric encryption classes supplied by the .NET Framework require a key and a new initialization vector (IV) to encrypt and decrypt data. Whenever you create a new instance of one of the managed symmetric cryptographic classes using the parameterless constructor, a new key and IV are automatically created. Anyone that you allow to decrypt your data must possess the same key and IV and use the same algorithm. Generally, a new key and IV should be created for every session, and neither the key nor IV should be stored for use in a later session.

Generate A Key Based On An Encrypted Keys

To communicate a symmetric key and IV to a remote party, you would usually encrypt the symmetric key by using asymmetric encryption. Sending the key across an insecure network without encrypting it is unsafe, because anyone who intercepts the key and IV can then decrypt your data. For more information about exchanging data by using encryption, see Creating a Cryptographic Scheme.

The following example shows the creation of a new instance of the TripleDESCryptoServiceProvider class that implements the TripleDES algorithm.

When the previous code is executed, a new key and IV are generated and placed in the Key and IV properties, respectively.

Sometimes you might need to generate multiple keys. In this situation, you can create a new instance of a class that implements a symmetric algorithm and then create a new key and IV by calling the GenerateKey and GenerateIV methods. The following code example illustrates how to create new keys and IVs after a new instance of the symmetric cryptographic class has been made.

When the previous code is executed, a key and IV are generated when the new instance of TripleDESCryptoServiceProvider is made. Another key and IV are created when the GenerateKey and GenerateIV methods are called.

Asymmetric Keys

The .NET Framework provides the RSACryptoServiceProvider and DSACryptoServiceProvider classes for asymmetric encryption. These classes create a public/private key pair when you use the parameterless constructor to create a new instance. Asymmetric keys can be either stored for use in multiple sessions or generated for one session only. While the public key can be made generally available, the private key should be closely guarded.

A public/private key pair is generated whenever a new instance of an asymmetric algorithm class is created. After a new instance of the class is created, the key information can be extracted using one of two methods:

  • The ToXmlString method, which returns an XML representation of the key information.

  • The ExportParameters method, which returns an RSAParameters structure that holds the key information.

Both methods accept a Boolean value that indicates whether to return only the public key information or to return both the public-key and the private-key information. An RSACryptoServiceProvider class can be initialized to the value of an RSAParameters structure by using the ImportParameters method.

Asymmetric private keys should never be stored verbatim or in plain text on the local computer. If you need to store a private key, you should use a key container. For more on how to store a private key in a key container, see How to: Store Asymmetric Keys in a Key Container.

The following code example creates a new instance of the RSACryptoServiceProvider class, creating a public/private key pair, and saves the public key information to an RSAParameters structure.

See also